Department of Mathematical and Computational Sciences

National Institute of Technology Karnataka, Surathkal

Theory of Complex Variables - MA 209
 Problem Sheet - 4
 Powers and Roots

1. For the following problems compute all roots. Give the principal nth root in each case. Sketch the roots $w_{0}, w_{1}, \ldots, w_{n-1}$ on an appropriate circle centered at the origin.
(a) $(8)^{\frac{1}{3}}$
(d) $(-1-\sqrt{3} i)^{\frac{1}{4}}$
(b) $(-125)^{\frac{1}{3}}$
(e) $\left(\frac{1+i}{\sqrt{3}+i}\right)^{(1 / 6)}$
2. Use the fact that $8 i=(2+2 i)^{2}$ to find all solutions of the equation $z^{2}-8 z+16=8 i$.
3. Show that the n nth roots of unity are given by
$(1)^{(1 / n)}=\cos \left(\frac{2 k \pi}{n}\right)+i \sin \left(\frac{2 k \pi}{n}\right) k=0,1,2, \ldots, n-1$
(a)Find n nth roots of unity for $n=3, n=4, n=5$
(b)Carefully plot the roots of unity found in part (b).Sketch the regular polygons formed with the roots as vertices.
4. Suppose ω is a cube root of unity corresponding to $\mathrm{k}=1$ in the last problem.
(a) How are ω and ω^{2} related?
(b)Verify by direct computation that $1+\omega+\omega^{2}=0$.
(c) Explain how the result in part (b) follows from the basic definition that ω is a cube root of 1 , that is, $\omega^{3}=1$. [Hint: Factor]
5. For a fixed n , if we take $\mathrm{k}=1$ in Problem 22 , we obtain the root $\omega_{n}=\cos \left(\frac{2 \pi}{n}\right)+i \sin \left(\frac{2 \pi}{n}\right)$

Explain why the n nth roots of unity can then be written $1, \omega_{n}, \omega_{n}^{2}, \ldots, \omega_{n}^{n-1}$
6. Consider the equation $(z+2)^{n}+z^{n}=0$, where n is a positive integer. By any means, solve the equation for z when $\mathrm{n}=1$ and $\mathrm{n}=2$.
7. Consider the equation in Problem 25.
(a) In the complex plane, determine the location of all solutions z when $\mathrm{n}=5$. [Hint: Write the equation in the form $[(z+2) /(-z)]^{5}=1$ and use part (a) of Problem 22.]
(b) Reexamine the solutions of the equation in Problem 25 for $\mathrm{n}=1$ and $\mathrm{n}=2$.
8. Let n be a fixed natural number.Put $\omega_{n}=\operatorname{cis}\left(\frac{2 \pi}{n}\right)$. Show that $1+\omega_{n}+\omega_{n}^{2}+\omega_{n}^{3}++\omega_{n}^{n-1}=0$. [Hint: Multiply the sum $1+\omega_{n}+\omega_{n}^{2}+\omega_{n}^{3}++\omega_{n}^{n-1}$ by $\omega_{n}-1$.]
9. Suppose n denotes a nonnegative integer. Determine the values of n such that $z^{n}=1$ possesses only real solutions. Defend your answer with sound mathematics.
10. Discuss: A real number can have a complex nth root. Can a nonreal complex number have a real nth root?
11. Suppose w is located in the first quadrant and is a cube root of a complex number z . Can there exist a second cube root of z located in the first quadrant? Defend your answer with sound mathematics.
12. Suppose z is a complex number that possesses a fourth root w that is neither real nor pure imaginary. Explain why the remaining fourth roots are neither real nor pure imaginary.

